Technical Bulletin

Information from Phibro Technical Services

Mycotoxin Levels of Concern for Poultry

Introduction

Molds are fungi which may colonize in poultry feed or grains, reducing their nutritional value by utilizing energy and protein for growth. Several mold species may produce metabolites toxic to poultry (mycotoxins) and the predominating mycotoxins may vary based on climates in different global geographies¹.

Key Outcomes of Mycotoxin Exposure in Poultry

Mycotoxins may alter the microbiome or damage organ systems in poultry, decreasing performance. They have

been shown to aggressively affect the G.I. tract, liver and kidneys, impacting several aspects of health and performance. Mycotoxins may also negatively impact the immune system, resulting in increased susceptibility to pathogens and disease, further complicating longterm productivity of poultry which may have been even temporarily exposed². Ultimately, animal performance and health events are the primary outcomes of interest when producers face mycotoxin challenges. Table 1 outlines key outcomes when poultry are exposed to mycotoxins.

Mycotoxin	Levels of Concern [*]	Effects on Health & Peformance	
Zearalenones (ZEN) produced primarily by <i>Fusarium</i> spp. on corn and cereal grains such as wheat and barley			
Chicks, Broilers, Layers, Breeders and Turkeys	0.5 ppm	Poultry are typically less sensitive to ZEN when compared to other livestock. Concentrations up to 0.5 ppm have been shown to have no detrimental per- formance effects on broiler chicks ³ (from one to 35 days of age) nor on turkey poults4 (from 55 to 79 days of age). Reproductive effects in layers and breeding birds may be of greater concern, though limited work has studied zearalenone independent of its co-contamination with DON	
Deoxynivalenol (DON) produced primarily by Fusarium spp. on corn and cereal grains			
Chicks, Broilers, Layers, Breeders and Turkeys	5 ppm	Expect compromised immunity above 5 ppm DON ⁵ . No negative effects on performance of broilers fed 5 ppm DON throughout the growing period ³ . Also, no effects in turkeys fed 5 ppm DON for 14 d ⁴ .	
Fumonisins (FUM) produced primarily by Fusarium spp. on corn and cereal grains			
Chicks	10 ppm	Feeding 20 ppm FUM during the broiler growing period had no ill effects on broil- er performance ³ yet significantly increased the sphinganine to sphingosine ratio (indicating early fumonisin toxicity). Concentrations as low as 18.6 ppm FUM altered intestinal microflora, predisposing broilers to necrotic enteritis and other digestive upsets6. No effects in turkeys fed 20 ppm FUM (FB1 + FB2) for 14 d ⁴ .	
Broilers	20 ppm		
Layers and Breeders	30 ppm		
Turkeys	20 ppm		
Aflatoxins (AFL) produced primarily by Aspergillus spp. on corn, cereal grains, peanuts, cottonseed and DDGs			
Chicks	0.005 ppm ^a	The previous EU value of 0.01 ppm AFL for chicks has since been lowered ⁷ .	
Broilers, Layers, Breeders and Turkeys	0.02 ppm	Because AFL are known carcinogens, the maximum allowable concentration in poultry feed is 0.02 ppm (20 ppb) in the EU and US. Lower performance, greater liver weights and immunosuppression may occur at higher concentrations ² .	

Table 1. Concentrations of Dietary Mycotoxins That Raise Concern for Health and Performance of Poultry

Mycotoxin Levels of Concern for Poultry

T-2 & HT-2 toxins produced primarily by Fusarium spp. on corn and cereal grains			
Chicks, Broilers, Layers, Breeders and Turkeys	0.25 ppm	Broilers fed as low as 1 ppm T-2 toxin for six weeks had significantly lower body weights after four weeks than broilers fed no mycotoxins ⁸ . Fifty percent of laying hens consuming 2 ppm T-2 toxin had mouth lesions, significantly decreased egg production and feed intakes ⁹ . Turkey poults also developed oral lesions when fed 0.24 ppm T-2 toxin for 32 d but performance was not affected ¹⁰ .	
Ochratoxin A (OTA) produced by Penicillium spp. on corn, cereal grains and peanuts			
Chicks	0.05 ppm⁵	Feeding 0.05 ppm OTA showed numerically decreased performance and thymus weights for a 35 d feeding period ¹¹ .	
Broilers	0.10 ppm	No negative performance effects of 0.1 ppm OTA reported in broilers but bio- markers indicated immunosuppression ¹² .	
Layers	0.10 ppm	Decreased egg production, feed efficiency and shell thickness observed in Leg- horn hens fed 2 ppm or more of OTA ¹³ .	
Breeders	0.01 ppm ^c	Eggs from breeder hens fed 0.1 ppm OTA for three weeks had decreased hatch- ability and immunosuppression was observed in chicks from those hens ¹⁴ .	
Turkeys	0.10 ppm	Turkey poults fed 3 ppm OTA for three weeks gained 8% less body weight than controls fed no mycotoxins ¹⁵ .	

* The European Union has some of the most stringent guidelines for mycotoxin levels of concern. Dietary mycotoxin concentrations are based on "as is" feeds containing approximately 88% dry matter (12% moisture).

^a Agriculture and Horticulture Development Board recommendations based on in vivo poultry studies.

^b Not an EU recommendation but a precautionary measure based on results from in vivo poultry studies⁵.

° Not an EU recommendation but a precautionary measure based on results from in vivo poultry studies4

Mycotoxins are becoming more prevalent in feeds due to changes in farming practices16 and more advanced mycotoxin analytics17. In poultry, DON is often considered the mycotoxin of greatest concern – due both to its prevalence in poultry feed products and its deleterious effects on performance. Local climate, harvesting and storage practices, along with species, age, stage of production and other stressors will contribute to the relative risk of each of these mycotoxins.

Although the recommendations presented here focus on individual mycotoxin analytical results, multiple mycotoxin occurrences are more common. In a study conducted in 2013, between seven and 69 mycotoxins, "emerging" mycotoxins and "masked mycotoxins" were identified in grains17. When multiple mycotoxins are encountered, overall animal toxicity is not the sum of the individual toxins but instead reflect additive and/or synergistic interactions which lead to multiple effects of toxicity18. When multiple mycotoxins are encountered, the levels of concern may be even lower.

References

¹Schatzmyer, G. and E. Streit. 2013. Global occurrence of mycotoxins in the food and feed chain: Facts and figures. World Mycotoxin J. 6:213-222; doi:10.3920/ WMJ2013.1572. ²Murugesan, G.R., D.R. Ledoux, K. Naehrer, F. Berthiller, T.J. Applegate, B. Grenier, T. D. Phillips, and G. Schatzmayr. 2015. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poultry Sci. 94:1298–1315; doi.org/10.3382/ps/pev075.

³Metayer, J.P., A. Travel, A. Mika, J.D. Bailly, D. Cleva, C. Boissieu, J. Le Guennec, P. Froment, O. Albaric, S. Labrut, G. Lepivert, E. Marengue, D. Tardieu and P. Guerre. 2019. Lack of toxic interaction between Fusariotoxins in broiler chickens fed throughout their life at the highest level tolerated in the European Union. Toxins 11:455; doi:10.3390/toxins11080455.

⁴Travel, A., J.P. Metayer, A. Mika, J.D. Bailly, D. Cleva, C. Boissieu, J. Le Guennec, O. Albaric, S. Labrut, G. Lepivert, E. Marengue, P. Froment, D. Tardieu and P. Guerrel. 2019. Toxicity of fumonisins, deoxynivalenol, and zearalenone alone and in combination in turkeys fed with the maximum European Union–tolerated level. Avian Diseases 63:703-8712; doi.org/10.1637/ aviandiseases-D-19-00073.

⁵Awad, W., K. Ghareeb, J. Böhm and J. Zentek. 2013. The toxicological impacts of the Fusarium mycotoxin, deoxynivalenol, in poultry flocks with special reference to immunotoxicity. Toxins 5:912-925; doi:10.3390/ toxins5050912.

⁶Antonissen, G., S. Croubels, F. Pasmans, R. Ducatelle, V. Eeckhaut, M. Devreese, M. Verlinden, F. Haesebrouck, M. Eeckhout, S. De Saeger, B. Antlinger, B. Novak, A. Martel and F. Van Immerseel. 2015. Fumonisins affect the intestinal microbial homeostasis in broiler chickens, predisposing to necrotic enteritis. Vet. Res. 46: article 98; doi.org/10.1186/s13567-015-0234-8.

⁷MacDonald, S.D. Chan, K. Lumb, H. Scott, L. Randall, S. Edwards, A. Millington, A. Stewart, E. Wielogórska and C. Elliott. 2016. Mycotoxin contamination: assessment of risk in livestock systems. Research Review No. 71282. Agriculture and Horticulture Development Board, Stoneleigh Park, Kenilworth, Warwickshire, UK. p. 18. 8Pande, V.V., N.V. Kurkure and A.G. Bhandarkar. 2006. Effect of T-2 toxin on growth, performance and haematobiochemical alterations in broilers. Indian J. Exp. Biol. 44:86-88.

⁹Diaz, G.J., E.J. Squires, R.J. Julian and H.J. Boermans. 1994. Individual and combined effects of T-2 toxin and DAS in laying hens. Br. Poult. Sci. 35:393-405; doi. org/10.1080/00071669408417704.

¹⁰Sklan, D., M. Shelly, B. Makovsky, A. Geura, E. Klipper and A. Friedman. 2003. The effect of chronic feeding of diacetoxyscirpenol and T-2 toxin on performance, health, small intestinal physiology and antibody production in turkey poults. Br. Poult. Sci. 44: 46–52.

¹¹Hameed, M.R., M.Z. Khan, A. Khan and I. Javed. 2013. Ochratoxin induced pathological alterations in broiler chicks: effect of dose and duration. Pak. Vet. J. 2013, 33:145-149.

¹²Pozzo, L., G. Salamano, E. Mellia, M.S. Gennero, L. Doglione, L. Cavallarin, M. Tarantola, G. Forneris and A. Schiavone. 2013. Feeding a diet contaminated with ochratoxin A for chickens at the maximum level recommended by the EU for poultry feeds (0.1 mg/kg). 1. Effects on growth and slaughter performance, haematological and serum traits. J. Anim. Physiol. An. N. 93:13-22; doi:10.1111/jpn.12050.

¹³Verma, J., T. S. Johri and B. K. Swain. 2003. Effect of varying levels of aflatoxin, ochratoxin and their combinations on the performance and egg quality characteristics in laying hens. Asian Austral. J. Anim. 16: 1015-1019.

¹⁴Hassan, Z., M.Z. Khan, A. Khan, I. Javed and M.K. Saleemi. 2011. Immunological status of the progeny of breeder hens kept on ochratoxin A (OTA)-contaminated feed. J. Immunotoxicol. 8:122-130; doi:10.3109/154769 1X.2010.547886.

¹⁵Kubena, L.F., T.S. Edrington, R.B. Harvey, T.D. Phillips, A.B. Sarr and G.E. Rottinghaus. 1997. Individual and combined effects of fumonisin B1 present in Fusarium moniliforme culture material and diacetoxyscirpenol or ochratoxin A in turkey poults. Poultry Sci. 76:256–264.

¹⁶Mansfield, M. A., De Wolf, E. D., and Kuldau, G. A. 2005. Relationships between weather conditions, agronomic practices, and fermentation characteristics with deoxynivalenol content in fresh and ensiled maize. Plant Dis. 89:1151-1157.

¹⁷Streit, E., C. Schwab, M. Sulyok, K. Naehrer, R. Krska and G. Schatzmayr. 2013. Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients. Toxins. 5:504-523. doi:10.3390/toxins5030504.

¹⁸Pereira, C.S., S.C. Cunha and J.O. Fernandes. 2019. Prevalent mycotoxins in animal feed: occurrence and analytical methods. Toxins. 11:290-352. doi:10.3390/ toxins11050290.

3

